Atomic Force Microscopic and Electrochemical Investigations of an Electrostatically Fabricated Single-Wall Carbon Nanotubes Modified Electrode
Xiaohu Qu
State Key Laboratory of Electroanalytical Chemistry, Changchun Institue of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
Search for more papers by this authorZhangquan Peng
State Key Laboratory of Electroanalytical Chemistry, Changchun Institue of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
Search for more papers by this authorYuling Wang
State Key Laboratory of Electroanalytical Chemistry, Changchun Institue of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
Search for more papers by this authorShaojun Dong
State Key Laboratory of Electroanalytical Chemistry, Changchun Institue of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
Search for more papers by this authorXiaohu Qu
State Key Laboratory of Electroanalytical Chemistry, Changchun Institue of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
Search for more papers by this authorZhangquan Peng
State Key Laboratory of Electroanalytical Chemistry, Changchun Institue of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
Search for more papers by this authorYuling Wang
State Key Laboratory of Electroanalytical Chemistry, Changchun Institue of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
Search for more papers by this authorShaojun Dong
State Key Laboratory of Electroanalytical Chemistry, Changchun Institue of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
Search for more papers by this authorAbstract
Single-wall carbon nanotubes (SWNTs) sub-monolayer film has been prepared by simply electrostatically adsorbing nanotubes onto a 2-aminoethanethiol self-assembled monolayer (SAM) on a gold bead electrode. Tapping-mode atomic force microscopy (TM-AFM) is used to characterize the SWNT film, which exhibits that the orientation of SWNTs on the SAM is horizontal and the surface coverage is quite low. The SWNTs modified electrode shows nearly ideal electrochemical response to Fe(CN)/Fe(CN) redox probe. The electrode with such a low SWNTs coverage, however, shows good electrocatalytic behavior to cytochrome c.
References
- 1 S. Iijima, Nature 1991, 354, 56.
- 2 P. M. Ajayan, Chem. Rev. 1999, 99, 1787.
- 3 H. Dai, Acc. Chem. Res. 2002, 35, 1035.
- 4 S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature 1998, 393, 49.
- 5 P. L. McEuen, Nature 1998, 393, 15.
- 6 T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Lieber, Science 2000, 289, 94.
- 7 M. Ouyang, J. L. Huang, C. M. Lieber, Science 2001, 292, 702.
- 8 P. G. Collins, A. Zettl, H. Bando, A. Thess, R. E. Smalley, Science 1997, 278, 100.
- 9 C. T. White, T. N. Todorov, Nature 1998, 393, 240.
- 10 M. Menon, D. Srivastava, Phys. Rev. Lett. 1997, 79, 4453.
- 11 W. A. De Heer, A. Chatelain, D. Ugarte, Science 1995, 270, 1178.
- 12 S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai, Science 1999, 283, 512.
- 13 C. Liu, Y. Y. Fan, H. T. Cong, H. M. Cheng, M. S. Dresselhaus, Science 1999, 286, 1127.
- 14 P. Chen, X. Wu, J. Lin, K. L. Tan, Science 1999, 285, 91.
- 15 S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 2001, 412, 169.
- 16 G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Nature 1998, 393, 346.
- 17 S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Nature 1998, 394, 52.
- 18 S. S. Wong, A. T. Woolley, E. Joselevich, C. L. Cheung, C. M. Lieber, J. Am. Chem. Soc. 1998, 120, 8557.
- 19 T. Nishino, T. Ito, Y. Umezawa, Anal. Chem. 2002, 74, 4275.
- 20 P. J. Britto, K. S. V. Santhanam, P. M. Ajayan, Bioelectrochem. Bioenerg.1996, 41, 121.
- 21 J. J. Davis, R. J. Coles, A. O. H. Allen, J. Electroanal. Chem. 1997, 440, 279.
- 22 P. J. Britto, K. S. V. Santhanam, V. Alonso, A. Rubio, P. M. Ajayan, Adv.Mater. 1999, 11, 154.
- 23 J. K. Campbell, L. Sun, R. M. Crooks, J. Am. Chem. Soc. 1999, 121, 3779.
- 24 J. M. Nugent, K. S. V. Santhanam, A. Rubio, P. M. Ajayan, Nano Lett. 2001, 1, 87.
- 25 J. Li, A. Cassell, L. Delzeit, J. Han, M. Meyyappan, J. Phys. Chem. B. 2002, 106, 9299.
- 26 C. Y. Liu, A. J. Bard, F. Wudl, I. Weitz, J. R. Heath, Electrochem. Solid-State Lett. 1999, 2, 577.
- 27 J. N. Barisci, G. G. Wallace, R. H. Baughman, J. Electrochem. Soc. 2000, 147, 4580.
- 28 J. N. Barisci, G. G. Wallace, R. H. Baughman, J. Electroanal. Chem. 2000, 488, 92.
- 29 H. Luo, Z. J. Shi, N. Q. Li, Z. N. Gu, Q. K. Zhuang, Anal. Chem. 2001, 73, 915.
- 30 J. X. Wang, M. X. Li, Z. J. Shi, N. Q. Li, Z. N. Gu, Anal. Chem. 2002, 74, 1993.
- 31 H. Shimoda, S. J. Oh, H. Z. Geng, Adv. Mater. 2002, 14, 899.
- 32 B. Wu, J. Zhang, Z. Wei, S. M. Cai, Z. F. Liu, J. Phys. Chem. B 2001, 105, 5076.
- 33 Z. F. Liu, Z. Y. Shen, T. Zhu, S. F. Hou, L. Z. Ying, Langmuir, 2000, 16, 3569.
- 34 Y. L.Yang, J. Zhang, X. L. Nan, Z. F. Liu, J. Phys. Chem. B 2002, 106, 4139.
- 35 J. H. Rouse, P. T. Lillehei, Nano. Lett. 2003, 1, 59.
- 36 L. Cai, J. L. Bahr, Y. Yao, J. M. Tour, Chem. Mater. 2002, 14, 4235.
- 37 S. G. Rao, L. Huang, W. Setyawan, S. Hong, Nature 2003, 425, 36.
- 38 J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, Science 1998, 280, 1253.
- 39 R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 1998, 57, 4145.
- 40 J. Clavilier, D. Armand, B. L. Wu, J. Electroanal. Chem. 1982, 135, 159.
- 41 Z. Peng, J. Tang, X. Han, E. Wang, and S. Dong, Langmuir 2002, 18, 4834.
- 42 Z. Tang, S. Liu, E. Wang, S. Dong, Langmuir 2000, 16, 4946.
- 43 H. O. Finklea, Electroanalytical Chemistry, Vol.19, Marcel Dekker, New York 1996, p.116.
- 44 B. R. Azamian, J. J. Davis, K. S. Coleman, C. B. Bagshaw, M. L. H. Green, J. Am. Chem. Soc. 2002, 124, 12664.